Nardcad High-Speed Design and Simulation

Nordcad

Agenda

Part 1

- High Speed Design what exactly classifies as high-speed
- When is signal integrity good enough? An introduction to noise budget
- What to do at what stage in the design cycle

Part 2

- Model extraction
- Different approaches to memory simulation
- What is so special about serial interface simulation

Introduction

Nordcad

• Who am I?

Introduction to Nordcad

- Cadence Channel Partner in Nordic countries
- Schematic, PCB, Circuit Simulation, CAD/CAM, RF/MW simulation, Signal- and Power Integrity, Thermal simulation, CFD, Meshing, PLM and services
- 20+ employees, sales and technical support
- Headquarters located in Aalborg Denmark
- Office in Stockholm Sweden

Part 1

High-Speed Design

4

What classifies a design as high-speed?

- Fast clock speeds?
 - 50MHz?
- DDR memory?
 - DDR?
 - DDR5?
- Serial links
 - Fast Ethernet 100Mb/s?
 - Gigabit Ethernet 1000Mb/s?
 - PCIe?
 - HDMI?

Nordcad

HIGH-DEFINITION MULTIMEDIA INTERFACE

Transmission lines

- High-speed is always related to the signal rise time t_{rise}
- Signal reflections start to occur when transmission lines are $\frac{t_{rise}}{2}$
- Signal crosstalk start to occur when transmission lines are $\frac{t_{rise}}{4}$, so half of the limit for reflection
- Back in the day high-speed interfaces utilized highspeed drivers, but today most drivers have sub 300ps rise times

Nordcad

l,5cm ≈ 100ps 15cm ≈ 1ns

Square wave signals

7

Signal integrity in a nutshell

 Input signal with given frequency content, amplitude and phase to transmission line

 Receive signal with same frequency content, amplitude and phase in receiving end

Introduction to noise margin

Noise margin

10

Largest noise sources in digital circuits

Noise sources Supply Reflections Crosstalk

Reflection

Impedance and Terminations

Trace impedance

- Why is it interesting to minimize impedance mismatch?
 - Seen through Signal Integrity glasses it can have a great impact on performance

Minimizing reflections

Reflections are caused by impedance mismatch

- Trace impedance mismatch
- Improper termination

Trace impedance is driven by fabrication and yield
 Tolerances on transmission lines

- Proper termination required for modern high-speed circuits
 - Termination type
 - Termination placement
 - Termination value

Reflection - termination

- Poorly matched impedance
 Too low impedance optoring
 - Too low impedance entering transmission line
- Overshoot which might break receiver over time
- Reflection noise eats noise margin

Reflection - termination

- Poorly matched impedance
 - Too high impedance entering transmission line
- Multiple roundtrips before steadystate voltage
 - Decreased timing
- High current consumption required for driving transmission line

Reflection - termination

Nordcad

Perfectly matched impedance

Voltage entering transmission line is half desired voltage

Series termination

- Reflection mode switching
- Very good for one direction point to point connection
- No requirement for strong drivers
- Effectiveness relies on how close it is to the transmitter
- Output impedance for rising and falling are seldom equal

Series Termination Stub

Nordcad

- Placement of series terminator has great impact of its effect
- Animation where terminator is moved along 100mm transmission line in 10mm increments
- How long a setries termination stub is allowable?

IN1 OUT1 MICROSTRIP MICROSTRIP PUL SE R1 TRESTATE 50 ohm 50 ohm 100.0000 MM 36 Ohm 0 0000 MM CDSDefaultOutpu CDSDefaultInput . 100mm Voltage [V] Ē 1.700 V 250 V 700.000 mV

Time [ns]

Series Termination Stub

Parallel termination

- Parallel termination impacts voltage swing
- Has increased current draw
- Ideally must be the last element on the lines
- Stubs change performance

Crosstalk

Coupling

Nordcad

Coupling

 Coupling arises from mutual capacitive and inductive coupling between traces

Coupling and Crosstalk

Coupling and Crosstalk

Simulating Crosstalk

- Topology consist of two nets
 - Aggressor
 - Victim

- Victim is parallel terminated to minimize reflections
- Near end crosstalk will in most PCB designs be the one to manage

Trace spacing

 Spacing between traces and length of parallel routing

Stackup parameters

Nordcad

Distance between routing layer and reference layer

Design cycle

Part 2

High-Speed Simulation

Simulation driven flow

Nordcad

Traditional Design

Simulation-Driven Design

Model Extraction

Model extraction

Nordcad

What needs to be captured for "good" models?

- Impedance
- Coupling
- Return path
- Losses
- PDN

Do we need to correlate with measurements?

- Of course, but set expectations accordingly!
- And use similar behavior as simulation

Model extraction

- Understand limitations of your extraction engine
 - What features are supported, and which aren't?
 - Is there a frequency limitation?

- Does the extracted model work for the given analysis?
 - S-parameters can be difficult in time-domain
 - Spice based models are fast

Topology extraction

- Single net mode
- Captures
 - Impedance
 - Length
 - Logical view of routed net
- Great for constraint development

Spice model extraction

- Single or interface extraction
 - Lumped spice model
 - Time domain models
 - FDTD is even an option for power-aware simulation
- Captures
 - Impedance
 - Coupling
- Fast and easy for time domain simulation
- Great for understanding impact of trade-offs during routing

S-parameter extraction

- Single net or interface
 - Frequency domain models
- In theory, captures everything!
 - Impedance
 - Coupling
 - Return path
- Different solver technologies (multiple vendors)
 - Hybrid solver faster and easier, limited capture
 - Full wave 3D slower and more complex, captures everything
- Great for final verification

Memory interfaces

Different approaches to simulation

Will it work or not simulations

- What is required for that kind of analysis?
 - IBIS models with defined power rails
 - Extracted layout model
 - Interconnect model including PDN with capacitors derated of course \odot
 - Package parasitic models
 - Die and package decoupling
 - Timing parameters for controller and memory

Different analysis approaches

Nordcad

• Will spice extraction with generic models capture uncertainties?

- Doesn't require a lot of experience
- Fast and easy to debug

What does addition of IBIS models add to the above?

- Better voltage levels, currents and load impedances
- Package parasitic and capacitance

Does frequency domain interface models enrich your analysis?

- Adds power domain to simulations
- Review interface through s-parameters
- Captures more details

Serial Links

Channels and Analysis

Serial links

Simulation of serial links requires s-parameters

- Depending on speed and layout structures 3D full wave extraction is often required
- Some interfaces can be analyzed by s-parameters and doesn't require simulation
- Simulation of serial links often relies on IBIS+AMI models which describes IO plus clock and data recovery
 - Methodology we also see in newer memory interface simulations

Insertion and return loss

- Nordcad
- Main goal for differential channel is to keep insertion loss high and return loss low

Differential mode s-parameters

Nordcad

43

Mode conversion

- 1st quadrant, EMI susceptibility
 - For perfect symmetric differential pairs numbers here should be low
- 3rd quadrant, EMI emission
- Adds distortion to differential signal
 - Reduced differential signal
 - Common mode signal may cause increased asymmetric noise
 - Common mode signal on cables may add to EMI
- Reasons for mode conversion
 - Difference in single line impedance
 - Length difference without compensation
 - Added elements to nets such as test pads
 - Return path issues
 - Fiber weave effect

Serial link simulation

Channel characterization

- Step response
- Impulse response calculated from step response
- Impulse response modified with AMI
- Convolution and millions of bits
 - Simulation is different from regular time-domain analysis
- Eye width, height, BER and bathtub curves

Summary

- Use analysis early in the design process (shift left)
 - Catching bug early is cheaper and easier
- Entry level tools are easier to come by
 - Tools are bundled with PCB tools and lots of free tools are available
- Don't expect to analyze everything in first go
 - Partitioning your design and running analysis on all groups take time
- Correlation between simulation and measurement is difficult
 - Often verification doesn't provide any real value